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Abstract
Our activated barrier hopping theory of segmental relaxation in deeply
supercooled polymer melts is applied to compute short time properties including
the glassy shear modulus, localization length and vibrational frequency.
Numerical calculations for specific polymers suggest the theory simultaneously
predicts a reasonable elastic modulus, localized state vibrational frequency,
dynamic fragility and dynamic crossover and glass transition temperatures.
The theory also provides explicit connections between short time-/length-
scale properties and the slow alpha relaxation process. The extension of the
theory to elevated pressures is initiated. Pressure is found to broaden the
deeply supercooled regime and reduce the dynamic fragility. However, the
predicted Rossler–Sokolov universal supra-Arrhenius law for the temperature
dependence of the alpha relaxation time remains accurate at all pressures.
A common theme is the essential role played by the ratio of the dynamic
crossover temperature (ideal mode coupling critical temperature) and kinetic
glass transition temperature even in the deeply supercooled regime where
activated processes are dominant.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Fundamental understanding of slow dynamics in deeply supercooled liquids is a major
challenge, continuing to spawn diverse theoretical approaches that remain strongly debated [1].
In the polymer field the tension between thermodynamic versus kinetic based approaches
has a long history, with the entropy catastrophe and free volume models representing the
classic extremes. Idealized mode-coupling theory (MCT) [2] is a powerful dynamic approach
formulated at the fundamental level of forces. A primary result is the prediction of an
ideal nonergodicity or glass transition at a temperature, Tc, well above the experimental

0953-8984/07/205123+13$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/20/205123
mailto:kschweiz@uiuc.edu
http://stacks.iop.org/JPhysCM/19/205123


J. Phys.: Condens. Matter 19 (2007) 205123 E J Saltzman and K S Schweizer

vitrification temperature Tg. A common interpretation of the MCT critical temperature is
that it signals a smooth crossover to strongly activated dynamics [2, 3], for which there exists
ample experimental evidence at an empirically deduced temperature Tc ∼ (1.1–1.4)Tg [1, 4].
Recently we presented a microscopic kinetic approach to address this problem for hard sphere
fluids and suspensions [5] and polymer melts [6] built on ideas from naı̈ve ideal mode
coupling [7], dynamic density functional [8] and activated rate theories [9]. The polymer theory
focuses on activated barrier hopping below Tc, and was developed with the goals of simplicity,
minimizing adjustable parameters and optimizing predictability. This motivated modest coarse
graining to the segmental level corresponding to the (nontraditional within MCT) idea that
dynamic collective density fluctuations on length scales considerably longer than the local
cage scale control slow dynamics in the deeply supercooled regime. The goals of this paper
are to work out predictions of the theory for short time properties, investigate their relation
with the slow alpha relaxation, and initiate generalization of the approach to high pressures. A
unifying theme is the critical role played by the ratio Tc/Tg, which both quantifies the breadth
of the deeply supercooled regime and emphasizes the fundamental importance of the dynamic
crossover (or ideal MCT) temperature.

We begin by briefly reviewing in sections 1 and 2 our prior work [6]. New calculations
of the dynamic fragility are also given in section 2. Section 3 presents new results for short
time dynamic properties associated with the quasi-localized state. The effect of pressure on Tc,
Tg and the alpha relaxation time is addressed in section 4. The paper concludes with a brief
discussion in section 5.

For polymer melts the elementary object of our theoretical description is a coarse grained
‘statistical segment’ of size σ . The dynamical consequences of chain connectivity are ignored,
corresponding to treating the melt as a liquid of segments. Neglect of global connectivity is
justified for the local segmental relaxation process at all temperatures of interest (Tc > T > Tg)

given the experimental fact that glassy dynamics becomes chain length independent for long
enough polymers. Of course, local chain structure (backbone stiffness, monomer shape,
rotational isomerism) is important at a quantitative, material-specific level. However, a first
principles treatment of the dynamical consequences of such chemical aspects is a formidable
task and hence we adopt the simplest locally coarse grained ‘Gaussian thread’ chain model
(degree of polymerization N) [10]. The closed nonlinear stochastic Langevin equation of
motion for the instantaneous scalar displacement of a segment from its initial (t = 0) location,
r(t), is [5, 6]

M
∂2r(t)

∂ t2
= −ζs

∂r(t)

∂ t
− ∂ Feff[r(t)]

∂r(t)
+ δ f (t) (1)

where M is the mass, the random force satisfies 〈δ f (0)δ f (t)〉 = 2kBT ζsδ(t), and ζs is a short
time friction constant. The nonequilibrium free energy consists of ideal entropy and caging-like
contributions

β Feff(r) = −3 ln(r) −
∫

d�q
(2π)3

ρC2(q)S(q)[1 + S(q)]−1 exp

{
−q2r 2

6
[1 + S−1(q)]

}
(2)

where β ≡ (kBT )−1. For long Gaussian threads the pre-averaging over local structural
and interaction potential length scales results in a wavevector-independent site–site direct
correlation function C(q) = C0, and a collective structure factor S−1(q) = S−1

0 + 1
12 q2σ 2,

where S0 ≡ S(q = 0) = ρkBTκ = (−ρC0)
−1 is the dimensionless compressibility which

quantifies the amplitude of long wavelength thermal density fluctuations, the statistical segment
length σ = √

C∞l where l is the average length of a backbone chemical bond and C∞ is the
characteristic ratio, and ρσ 3 is the reduced segmental density, which is of order unity. Using
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these results, simple algebra and appropriate nondimensionalizations allows the nonequilibrium
free energy to be written as [6]

β Feff(α
∗) = 3

2
ln(α∗) − 12

√
3

π
λ

∫ ∞

0
dy

(
y

1 + y2

)2

exp

[
− y2(1 + y2)

4α∗

]
(3a)

λ ≡ 1

ρσ 3S3/2
0

(3b)

where y ≡ qσ
√

S0/12, α ≡ 3/2r 2 and α∗ ≡ ασ 2S2
0/12. The theory is characterized

by a single dimensionless ‘coupling constant’, λ, involving experimentally measurable
thermodynamic and structural quantities. This is the origin of its predictive power, which can
be viewed as in the spirit of MCT, which predicts dynamics based solely on equilibrium input.
Our quantification of force correlations and dynamic constraints based on a thermodynamic
property (S0) would appear to be in contrast with theories based on the ‘entropy crisis’
idea, including the modern entropic droplet approach [11] and molecularly sophisticated
formulations for polymers [12], which effectively a priori postulate a connection between a
configurational entropy and a barrier hopping controlled relaxation time in the Adams–Gibbs–
diMarzio spirit [1]. Note that the shape and characteristics of the nonequilibrium free energy
of equation (3) are not universal given the material specificity of ρσ 3 and S0.

Minimization of the nonequilibrium free energy with respect to r , or dropping the thermal
noise term in equation (1), yields a self-consistent localization equation for the ‘naı̈ve’ MCT
glass transition which occurs at λc = 8.32. A polymer integral equation theory analysis
suggests a simple temperature dependence for S0 which has been demonstrated to describe
experimental data extremely well [6]:

S−1/2
0 = −A + (B/T ) (4)

where A > 0 and B is related to the melt cohesive energy. The material-, pressure- and
(in principle) degree-of-polymerization-dependent parameter A is of order unity, and typically
B ∼ 700–1300 K and correlates with polymer polarity. Combining equations (3) and (4), and
taking the segmental density as a material constant, yields

Tc = B

A + (λcρσ 3)1/3
. (5)

A priori calculation of Tc for many real polymers yields numerically realistic values [6]. Below
Tc (λ > λc) there is a smooth crossover to the deeply supercooled regime where collective
barriers due to segment–segment interchain forces emerge. Figure 1 shows a typical result for
the nonequilibrium free energy, which is characterized by a metastable local minimum and a
barrier of height FB. Numerical calculations find the barrier is extremely well described (see
inset) by a critical power law form:

β FB ≈ c(λ − λc)
�, c ∼= 0.4, � � 1.3. (6)

Although the barrier height is a universal function of the dimensionless coupling constant, its
temperature dependence is material specific.

Above Tc the dynamics is treated in an Arrhenius manner (consistent with experiment)
corresponding to a ‘primitive’ [1] alpha relaxation time τ0(T ) ≡ τ0 exp(ε/kBT ) where
τ0 ≈ 10−14±1 s is a vibrational timescale and ε is a material-specific local activation energy.
Below Tc the simplest model that smoothly bridges the normal and supercooled regimes is
employed [6]:

τ (T ) = τ0 exp

(
ε

kBT

)
exp

(
ac FB(T )

kBT

)
. (7)
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Figure 1. Nonequilibrium free energy (units of thermal energy) as a function of dimensionless
displacement for parameters appropriate for polyvinylacetate (PVAC) [6]. Top (bottom) curve:
λ = 10 and Tc/T = 1.04 (λ = 20 and Tc/T = 1.27). Upper inset: schematic diagram of
localized polymer segments connected by entropic springs. Lower inset: collective barrier (units of
kBT ) as a function of the coupling constant λ. Numerical results (points) are fitted by the critical
power law of equation (6).

This corresponds to adopting the primitive alpha timescale as the dynamical prefactor for
hopping over collective barriers. As previously discussed [6], equation (7) ignores a narrow
intermediate temperature crossover regime that may often bridge the Arrhenius and deeply
supercooled regimes.

Recall that underlying equation (1) is a ‘segmental liquid’ model corresponding to the
simplifying assumption that global chain connectivity does not modify the barrier hopping
process. In reality there are short range equilibrium correlations between connected segments
that have dynamic consequences. To empirically model this effect a temperature-independent
cooperativity parameter, ac, is introduced in equation (7) corresponding to an effective barrier
height of ac FB [6]. Physically, ac should correspond to the number of dynamically correlated
segments along the chain, and therefore its magnitude is determined by a dynamical correlation
length. The latter is typically assumed to be reliably estimated from an equilibrium measure
of chain backbone stiffness: either the Kuhn length lk = C∞l, or the persistence length
ξp = (C∞ + 1)l/2 [13, 14]. For the Gaussian thread model the cooperativity parameter
can be determined by equating the end-to-end distance of the dynamically cooperative unit
(
√

acσ) to the Kuhn or persistence length, thereby yielding ac = C∞ or ac = (C∞ +1)2/4C∞,
respectively. Since typically C∞ ≈ 4–10, estimates of ac ∼ 1–10 follow. The characteristic
ratio generally increases with chain length, ultimately saturating at a material-specific value of
N [15]. This implies the intuitive trend of a finite size increase of the cooperativity parameter
as chains get longer.

The material-specific local activation energy is not a priori known and is determined by
adopting the recent proposition [16] of a (nearly) universal ‘magic relaxation time’ at the
dynamical crossover τ0(Tc)

∼= 10−7±1 s. A qualitative argument for its physical basis has been
given [6]. This condition plus equation (3) then yields (for τ0 ≈ 10−14 s) ε ∼= (16.1±2.5)kBTc.
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Figure 2. Dimensionless spring constant (units of kBT/σ 2; upper group) and glassy shear
modulus (units of kBT/σ 3; lower group) as a function of inverse dimensionless temperature for
polymer parameters representative of [6] PVAC (solid blue curve), polyetherimide (PEI) (dashed
red curve) and polypropylene (PP) (squares). Hatched green lines are exponential fits. Inset:
dynamic fragility at the glass temperature (τ (Tg) ≡ 100 s, τ (Tc) ≡ 10−7 s, material parameters
from [6]) as a function of cooperativity parameter for PS (filled red circles), PMMA (shaded green
circles), polybutadiene (open blue circles), polyethyleneoxide (filled red squares), PEI (shaded
green squares), polyethylene (open blue squares), polydimethylsiloxane (filled red diamonds),
polycarbonate (shaded green diamonds), PP (open blue diamonds), PVAC (filled red triangles),
polyisobutylene (shaded green triangles), polyisoprene (open blue triangles). The single curve is a
collective fit given by m = 16 + 40.6a0.56

c , where the intercept was forced to agree with the ac = 0
noncooperative Arrhenius behaviour.

Equations (3)–(7) constitute our analytic theory for the alpha relaxation time in the deeply
supercooled regime. The practical experimental criterion for a glass transition is τ (Tg) = 10x s
where x = 2–4.

2. Dynamic fragility

The theory sketched in section 1 is divergence free. It predicts temperature dependences
of the alpha time consistent with experimental analyses based on empirical multi-parameter
functional forms generally involving (hypothetical) essential singularities such as the free
volume or Vogel–Fulcher–Tammann (VFT) equations [6]. The inset of figure 2 shows new
calculations of the dynamic fragility, m ≡ d(lg τ )/d(Tg/T )|Tg , which establish how it grows
with the cooperativity parameter. Since the equation of state properties of most polymers
are quite similar (segment density, A and B in equation (4)), the origin of the large range
of dynamic fragilities (∼45–180) observed for polymers is suggested to arise primarily from
intrachain constraints (stiffness) as encoded in the parameter ac. Our prior analytic and
numerical analysis reveals a fundamental connection between the fragility and the ratio of the
crossover to kinetic glass temperatures which quantifies the breadth of the deeply supercooled
regime [6]:

m ∼= b/[1 − (Tg/Tc)] (8)

5



J. Phys.: Condens. Matter 19 (2007) 205123 E J Saltzman and K S Schweizer

where b ≈ 14 ± 2 for τ (Tc) = 10−7±1 s and τ (Tg) = 100 s. This correlation is in excellent
agreement with experiment [17]. Equation (8) also corresponds to a close relationship between
the local activation energy (or Tc) and fragility. This connection between short and long time
dynamical processes has been recently emphasized experimentally [18]. Additionally, since the
characteristic ratio (and hence ac) generally decreases as chains get shorter, Tg decreases more
strongly than Tc as N is reduced, and hence the breadth of the supercooled regime is expected to
increase as N decreases. Equation (8) then immediately implies the dynamic fragility decreases
as chains get shorter, a trend often observed [19, 20]. It also suggests that what controls the
long chain limit of the dynamic fragility is the saturation of the characteristic ratio (CN → C∞)

corresponding to the attainment of full Gaussian statistics, as emphasized by Sokolov et al
based on experimental studies [15].

A universal form for the temperature dependence of the alpha relaxation time in the deeply
supercooled regime of a supra-exponential critical power law form has been previously shown
to be predicted based on approximate analytic analysis and detailed numerical calculations [6]:

Lg[τ (T )/τ (Tc)] = cX ν

X ≡ [(Tc/T ) − 1]/[(Tc/Tg) − 1] (9)

where X is a normalized and dimensionless inverse temperature variable that quantifies the
distance from the dynamic crossover and onset of collective barriers. The effective exponent
ν ∼= 1.4 ± 0.1 depends weakly on the dynamic crossover time and temperature range analysed,
and c is a constant. Equation (9) corresponds to a nonanalytic supra-Arrhenius temperature
dependence that transcends all material details of the theory (segmental density, compressibility
parameters A and B , cooperativity parameter, etc). Its basic form, including the magnitude of
effective exponent, is in excellent accord with experiments on a wide range of glassy materials
including polymer melts [17].

3. Short time properties

A (perhaps overly) stringent test of our coarse grained segment level theory is whether it makes
reasonable predictions for short time properties such as the glassy elastic shear modulus, G ′,
and localized state vibrational frequency. These properties are controlled not by the slow
barrier hopping process, but rather the nature of the quasilocalized state. As evident in
figure 1, the localization length (minimum of Feff(r)) obeys rloc � σ and decreases with
cooling. The barrier location is weakly temperature dependent and of the order of a few
tenths of a segment length. As indicated by the schematic diagram in figure 1, such short
lengths seem qualitatively consistent with our use of a ‘liquid of segments’ model in the sense
that barrier hopping occurs on distance scales significantly smaller than those associated with
entropy-driven conformational fluctuations on length scales larger than the statistical segment
length (Rouse or entangled dynamics [21]). Indeed, this is the fundamental assumption of
all the classic coarse-grained theories for the universal chain dynamics [21] which treat the
glassy relaxation process as merely defining a local segmental friction constant which sets
the elementary timescale for large scale polymer motions. In this section we analyse glassy
mechanical and vibrational properties and their connection to the long time alpha process.

3.1. Localized state vibrational frequency

Below Tc the minimum of Feff(r) is characterized by its harmonic curvature or spring constant,
K0(T ). Numerical calculations of this quantity for three polymers are shown in figure 2. The
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spring constant rises rapidly near the crossover temperature and then exhibits an Arrhenius
dependence: K̃0 ≈ K0σ

2/kBT ∝ exp(bTc/T ) with b ∼ 17–18. The material dependence is
weak. As previously discovered for athermal hard sphere fluids [5], we find (not plotted) that
for values of β FB up to ∼10 there is a direct correlation of the spring constant and barrier height

given roughly by β FB ∝
√

K̃0. This is an intriguing result since it implies a tight connection
between the property that controls long time relaxation (barrier) and one that controls short
time vibrational motion.

From a solid state perspective our single particle Langevin equation theory is of the form
of a simple damped Einstein oscillator model at short times. The analogue of a boson peak
type excitation corresponds to a localized underdamped oscillatory solution of equation (1).
The dissipative short time/distance dynamics enter equation (1) enter via a friction constant.
For motion on very short length- and timescales this corresponds to the ubiquitous ‘fast beta’
process, a non-activated Debye process which exhibits a nearly temperature- and material-
independent relaxation time of the order of a picosecond [1, 22, 23]. Here we simply examine
the characteristic timescales of the Brownian harmonic limit of equation (1), which is given by

M
∂2r(t)

∂ t2
+ ζs

∂r(t)

∂ t
+ K0(r(t) − rloc) = δ f (t). (10)

Analytic solution of this linear stochastic differential equation is standard. The damped
harmonic oscillator relaxation time is τs = 2M/ζs, and the circular frequency is

�B = 1

2π

√
K0

M

[
1 − M

K0

(
ζs

2M

)2]1/2

≡ �B,0

2π

√
1 − R (11)

where R ≡ (�B,0τs)
−2. These results apply in the underdamped regime corresponding to

R < 1. Since R decreases as temperature is lowered (see below) the above frequency
grows with cooling, ultimately saturating at �B,0. Experiments do suggest the boson peak
frequency increases with cooling [26]. Whether the saturation occurs above Tg requires a
precise calculation.

It is of interest to numerically estimate �B,0 based on the experimental knowledge
that τs ≈ ps and our theoretical results for K0. Interestingly, recent experiments
on polymethylmethacrylate (PMMA) find the observable features of the boson peak are
qualitatively the same for incoherent (single particle) and coherent (collective) inelastic
scattering [24], suggesting our self-localization model has some merit for this property. The
effective mass involved in the polymer boson peak phenomenon remains debated, but ∼5–
10 monomers has been suggested. Experiments on polymers [22], and also van der Waals
molecular glass formers [25], have reported a simple inverse square root dependence of the
boson peak frequency on mass, which is in qualitative accord with equation (11) when R is
small.

For polystyrene (PS) or PMMA, the Kuhn length corresponds to roughly ten backbone
bonds or five monomers. Taking this as the mass, σ = √

C∞l ≈ 0.5 nm and Tc/Tg ∼ 1.13
(corresponding to a fragility of ∼115–120), equation (11) yields an upper bound for �B at
the glass transition of �B,0 ∼ 1500 GHz. The boson peak of many polymers falls in the
range of 1.3–4 meV ∼300–1000 GHz. Obviously, choosing a larger effective mass reduces
the theoretical result, as would corrections due to nonzero R. Since R ≡ 1/(�B,0τs)

2 ∝
K −1

0 ∝ exp(−bTc/T ), we are led to the suggestion (all other factors being the same) that
the localized state vibrational frequency increases for less fragile systems corresponding to
larger Tc/Tg values. As Tc is approached the nonequilibrium free energy loses its localized
state (minimum) and one expects a crossover to an overdamped (nonoscillatory) short time

7
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Figure 3. Top panel: dynamic crossover and glass transition temperatures as a function of pressure
(τ (Tg) ≡ 100 s, τ (Tc) ≡ 10−7 s). Lines with squares are for polystyrene (PS); circles are for PVAC.
Dynamic crossover (or ideal MCT) temperatures are solid lines and glass transition temperatures are
dashed lines (PS—red, PVAC—blue) with ac = 1, 3, 6 (filled, shaded, open shapes). Lower panel:
dynamic fragility at Tg(P) as a function of pressure for PS and PVAC. Symbols and lines as above.

dynamics corresponding to R > 1. Using τs ≈ ps, our calculations of K0, and the above
PMMA material parameters, we estimate from the condition R(T ∗) = 1 that this crossover
temperature T ∗ lies just below Tc.

As a cautionary comment, we realize that the physics underlying the boson peak no doubt
involves some degree of collective vibrational motion of many elementary units although the
details remain poorly understood [1, 22–27]. Our single particle or Einstein solid approach
ignores such cooperative motion. However, the recent incoherent scattering experiments on
PMMA [24] are suggestive that local self-motion may faithfully reflect crucial aspects of the
collective vibrational process quantified by the boson peak measurements.

3.2. Glassy shear modulus

The standard Green–Kubo formula for the elastic modulus is adopted, which, in conjunction
with factorization of multipoint correlations, yields the glassy shear modulus due to segmental
localization [28]

G ′ = kBT

60π2

∫ ∞

0
dq

(
q2 ∂

∂q
ln S(q)

)2

exp

[
− q2r 2

loc

3S(q)

]
. (12)

The modulus is determined by the dimensionless compressibility, segmental density and
localization length, rloc. Figure 3 shows results for G ′ in units of kBT/σ 3. The modulus at
the onset of segmental localization is G̃ ′ ≡ σ 3G ′/kBTc ≈ 1. Interestingly, since ρσ 3 ≈ 1 [6]
this implies G ′(Tc) ≈ ρkBTc = G ′

Rouse, where G ′
Rouse is the zero time initial Rouse theory

shear modulus associated with the intrachain conformational entropy of a Gaussian coil [21].
Hence, upon cooling below Tc the modulus due to interchain interactions and transient
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segment localization becomes significant relative to the high temperature entropic contribution.
Such enhanced elasticity has long been known to exist in polymer melts [29], and its onset
historically defines a temperature Tll ≈ (1.2 ± 0.1)Tg. This observation finds a natural and
fundamental theoretical basis in our approach where Tll ≈ Tc, as also suggested by Sokolov
and co-workers [30].

From figure 2 one sees that deep in the supercooled regime the glassy modulus grows
exponentially with cooling in a weakly material-specific manner, G̃ ′ ∝ exp(aTc/T ), where
a ∼ 12–13. This temperature dependence is considerably stronger than for the bulk modulus,
KB = ρkBT S−1

0 , but weaker than for the spring constant K0. At the glass temperature, using
σ � √

C∞l ∼ 0.5 nm, Tc/Tg ∼ 1.13 and Tg ∼ 345–350 K characteristic of PS and PMMA,
figure 2 implies that G̃ ′ ≈ 60–70, which corresponds to G ′ ∼ 2.5–3 GPa. Experimentally, the
order of magnitude of the glassy polymer modulus at Tg is 1–3 GPa [31].

Without overemphasizing the numerical aspects, we believe the ability of our theory to
simultaneously predict a reasonable elastic modulus, localized state vibrational frequency,
dynamic fragility, the scaling of equation (9) and crossover temperature and glass temperatures
is significant. It also provides an explicit theoretical realization of a strong correlation between
short time/length-scale properties and the slow alpha relaxation process as commonly observed
experimentally [1, 16].

4. Pressure effects

The development of our theory thus far has focused entirely on the dynamics as a function
of temperature at atmospheric pressure. External pressure also enters the theory via the
dimensionless compressibility and segmental density in equation (3). Our present goal is
to briefly investigate at a zeroth order level the nature and sensitivity of our theory for
pressure effects, a detailed treatment of which will be the subject of a future publication.
By far the most pressure-sensitive property is the isothermal compressibility, which decreases
quite strongly with pressure. We employ the experimental finding that the bulk modulus of
polymer melts and molecular liquids is to a good approximation linearly dependent on pressure:
KB(P) ∼= KB(P = 0) + B1 P , where B1 is a material specific constant, typically ∼8–12 for
polymers [33]. The dimensionless compressibility can then be written as

1

S0(T, P)
= 1

S0
0 (T )

+ B1 P

ρkBT
=

(
−A + B

T

)2

+ P

P1
(13)

where P1 ≡ ρkBT /B1 and S0
0 (T ) ≡ S0(T, 0) is the atmospheric pressure dimensionless

compressibility. Recent experiments have found the dynamic crossover time is pressure
independent [32], a result we adopt literally. For analytic simplicity, σ and ρσ 3 are taken
as T - and P-independent material parameters while allowing ρ = ρ(P, T ) to vary according
to the equation of state. There must be corrections to the above simplifying assumptions but
they require polymer-specific experimental data to assess.

Equation (13) implies that S−1
0 remains a quadratic function of inverse temperature, and the

nonequilibrium free energy continues to be specified by the dimensionless coupling constant of
equation (3). Hence all the prior analytic and numerical analysis of the theory at atmospheric
pressure [6] carries over to the high pressure regime. The dynamic crossover temperature
occurs at λ = λc = 8.32. Combining equations (3b) and (13) thereby yields

9
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Tc(P)

B
=

{
A − P

2P̃2

+
√

D − A
P

P̃2

+
(

P

2P̃2

)2}−1

Tc(P) ∼= T 0
c

{
1 + T 0

c P

2B P̃2

(
1 + A√

Dc

)} (14)

where (S0,c)
−1 = (λcρσ 3)2/3 ≡ Dc and P̃2 ≡ ρkB B/B1. The second line is the leading order

in pressure result where T 0
c is given by equation (5). If the temperature is fixed at T > T 0

c then
the crossover pressure is

Pc = ρkBT

B1

[
Dc −

(
B

T
− A

)2]
. (15)

Although not pursued here, by following prior analysis [6] approximate (but accurate) analytic
results can be derived for Tg(P), the breadth of the supercooled regime, Tc(P)/Tg(P), and the
fragility m(P).

In our model calculations the quantities ρkBT and ρ(T, P) are computed using the
equation of state that follows from equation (13) under the simplifying assumption of constant
thermal expansivity for all temperatures, pressures and materials. The parameter B1 is treated
as the single adjustable constant. Representative numerical results for the crossover and glass
temperatures of PS and PVAC as a function of pressure are shown in figure 3 for several values
of the cooperativity factor with fixed τ (Tg) = 100 s and dynamic crossover time of 10−7 s.
The parameter B1 was chosen once for each polymer to reproduce the experimental value of
(dTg/dP)P→0 (0.36 K MPa−1 for PS, 0.25 MPa K−1 for PVAC [32]) when ac = 3, thereby
yielding B1 = 3.15 (2.54) for PS (PVAC). The pressure dependence of Tc and Tg are nearly
linear. Hence the final equality in equation (14) provides insight into the factors that control the
pressure dependence of the crossover temperature. Although not visually obvious, the pressure
dependence of Tc is stronger than for Tg, and hence the breadth of the deeply supercooled
regime increases with pressure.

Numerical calculations of the dynamic fragility at Tg(P) for all model parameters and
pressures are found to be extremely well described by equation (8). Thus, as shown in
figure 3, since the ratio Tc/Tg increases with pressure the fragility decreases with pressure in
a manner that is quantitatively sensitive to polymer chemistry and the cooperativity parameter.
Specifically, the calculations in figure 3 correspond to values of dm/dP|0 between −0.05
and −0.1 (MPa)−1. Figure 4 shows the relative percentage change of the fragility, m̂ ≡
[m(P) − m(0)]/m(0), increases more slowly at elevated pressures, and is enhanced by
increasing cooperativity parameter (ac) and/or atmospheric fragility (PS versus PVAC). The
trend of a pressure-induced reduction of fragility agrees with many, but not all, experiments
on polymers [32]. For example, dm/dP|0 ≈ −0.16, −0.035, −0.18 and −0.5 (MPa)−1

for PS, polybutadiene, PMMA and polyvinylchloride, respectively, but ∼0 for PVAC and
polymethylphenylsiloxane [32].

Insight concerning the origin of the strong nonuniversality of the pressure dependence of
the fragility can perhaps be obtained from the general form of our theoretical result, which
straightforwardly follows from equation (8):

dm

dP

∣∣∣∣
0

= m2
0

b(1 − bm−1
0 )

d

dP
lg

(
Tg

Tc

)∣∣∣∣
0

= b(T 0
c /T 0

g )

[(T 0
c /T 0

g ) − 1]2

d

dP
lg

(
Tg

Tc

)∣∣∣∣
0

. (16)

A simple correlation of this pressure derivative with the atmospheric value of fragility (m0),
the dynamic crossover time, or another property is not evident [20]. However, in the context
of our approach there is an underlying simplicity since the pressure derivative is fully specified
by the ratio of the crossover to glass temperatures. The last factor in equation (16) suggests
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Figure 4. Normalized differential fragility, m̂ ≡ [m(P) − m(0)]/m(0), as a function of pressure
for the systems of figure 3.

subtle cancellation can occur, leading to pressure insensitivity of the fragility, if the logarithmic
pressure derivatives of Tc and Tg are nearly equal. Equation (5) and our prior analytic
expression [6] for the glass transition temperature provide explicit insight concerning what
molecular factors enter. Note that an equation analogous to equation (16) can be written down
for the molecular weight (N) derivative of the fragility. Since the cooperativity parameter
is chain length dependent at low N via the characteristic ratio, an additional complexity is
introduced in equation (16).

Finally, we have analysed the extent to which equation (9) applies at elevated pressures.
Remarkably, the results in figure 5 show the universality predicted at atmospheric pressure [6]
is equally accurate at elevated pressures for various polymers and cooperativity factors (at fixed
dynamic crossover time). We remind the reader that equation (8) is an immediate consequence
of equation (9). We believe the robustness of equation (9) is significant since it provides a
unifying principle for how to understand, organize and create master plots of the temperature,
pressure, chemical structure and molecular weight dependences of the alpha relaxation time.
The critical material property is the breadth of the deeply supercooled regime, as quantified by
the ratio Tc/Tg.

5. Summary

Our dynamical activated barrier hopping theory of segmental relaxation in deeply supercooled
polymer melts [6] has been extended to treat short time properties (glassy shear modulus,
localized state vibrational frequency), and their correlations with the dynamic fragility and
alpha relaxation time have been established. Comparisons of the theory with experiments
are encouraging. The extension of the theory to elevated pressures has been initiated. The
theory predicts that pressure broadens the deeply supercooled regime and reduces the dynamic
fragility. However, equation (9) remains remarkably accurate for fixed dynamic crossover time.
For real materials the latter time is not strictly universal and hence system-specific deviations
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Figure 5. Logarithm (base 10) of the relaxation time normalized by the crossover time as a function
of the dimensionless inverse temperature variable X = (Tc/T − 1)/(Tc/Tg − 1) for temperatures
from Tc to below Tg. Symbols indicate ac = 1 (filled red), ac = 3 (shaded green), ac = 6
(open blue) for PS (squares) and PVAC (circles). Results at various pressures covering the range
0–200 MPa are shown. Fits to the form of equation (9) for the many different systems and pressures
have been done, but on the scale of the plot all essentially collapse onto a single power law curve
given by equation (9) with an effective exponent ν ≈ 1.3.

from the suggested master curve will occur [6]. The ratio of the dynamic crossover (ideal
MCT) and glass temperatures plays a critical role in our results, which further supports prior
findings [6] that Tc (and hence the ideal MCT nonergodicity transition) is an essential variable
for controlling the activated barrier hopping process.

Related future research will work out the full predictions of the simple theory for
the frequency domain boson peak-like feature, more carefully address pressure and chain
length effects for specific polymers, and extend the theory to treat several types of dynamic
heterogeneity effects driven by the barrier hopping process [28, 34]. Finally, there remains
the major challenge of developing a unified theory that merges the present approach for glassy
local segment dynamics (for which global chain motions are not important) with a description
of coil scale polymer dynamics. Even for unentangled polymer melts the achievement of this
goal requires a consistent treatment of intrachain (entropic spring) and interchain forces, and a
more fundamental understanding of how the independent Rouse mode concept [21] emerges
and its limitations. Experimental motivation for addressing this difficult problem includes
the poorly understood, but ubiquitous and material-specific, phenomenon of the breakdown
of time–temperature superposition in supercooled polymer melts [1, 30].
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